Table of CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTRF Tech Transfer Mission</td>
<td>4</td>
</tr>
<tr>
<td>Letter from the President</td>
<td>5</td>
</tr>
<tr>
<td>COVID-19 Innovators</td>
<td>6</td>
</tr>
<tr>
<td>Decade in Review</td>
<td>10</td>
</tr>
<tr>
<td>UTRF by the Numbers</td>
<td>12</td>
</tr>
<tr>
<td>Startups: Supporting the Entrepreneurial Community</td>
<td>14</td>
</tr>
<tr>
<td>Commercialization Analysts</td>
<td>17</td>
</tr>
<tr>
<td>Outreach & Events</td>
<td>18</td>
</tr>
<tr>
<td>Inventor Spotlight</td>
<td>20</td>
</tr>
<tr>
<td>2020 Maturation Grants</td>
<td>22</td>
</tr>
<tr>
<td>Path to Market</td>
<td>23</td>
</tr>
<tr>
<td>Issued Patents FY 2020</td>
<td>27</td>
</tr>
<tr>
<td>Featured Inventors</td>
<td>28</td>
</tr>
<tr>
<td>UTRF Staff & Board</td>
<td>31</td>
</tr>
</tbody>
</table>
Our mission is to support an entrepreneurial culture, enhance research, and facilitate economic development by commercializing intellectual property created within the University of Tennessee System.
This year was marked by a global pandemic with worldwide impacts on public health, infrastructure, and the economy. Though it brought about devastating effects, it also revealed an important and often essential contribution of innovation to society: hope. I am proud of the countless innovators at the University of Tennessee who rose to the challenge and provided hope to millions of people.

One 20-year-old invention in particular was used every day in HVAC systems, hospitals, and dusty work environments without much fanfare, until this year. Dr. Peter Tsai, while at the University of Tennessee, created the N95 mask filtration material that ascended into the global media spotlight as essential personal protective equipment for healthcare workers on the front lines in the fight against COVID-19.

Dr. Tsai then came out of retirement to help researchers at Oak Ridge National Lab and UT increase N95 mask material production. He also worked to develop a new hydrocharging method to improve N95 filtration efficiency and has been working with various companies to produce this material.

The pandemic put a national spotlight on our healthcare innovations - from using supercomputers to identify drug compounds, to face shields, mask materials, and apps to help intubated patients communicate. But perhaps more importantly, it revealed how our researchers and their discoveries can make a profound impact on society through protecting and saving human lives.

In FY20, UTRF received a record-breaking 201 invention disclosures, executed 42 license agreements, and launched 6 technology-based startups. The innovations behind these numbers are not limited to COVID-19 research. They include technology used to fight a billion-dollar soybean crisis, a biopharmaceutical startup demonstrating progress in therapeutics for a rare disease, an advanced composites startup that developed a revisionary carbon fiber dispersion technique, and so much more. Every single day, UT researchers are making important discoveries and advancing technology in their chosen fields.

This year has been difficult for so many, but UT researchers have persevered, using their expertise to help those in need. We are honored to serve UT’s faculty, staff, and students across all campuses and institutes as they develop innovations that instill hope for the future. We hope you enjoy the Discover 2020 report, and we look forward to the coming year and achieving new milestones in 2021.

Stacey S. Patterson, PhD
UTRF President
Dr. Tsai worked with the Carbon Fiber Technology Facility team at ORNL to develop an inline charging technology for the meltblown line and coordinated with staff at the Manufacturing Demonstration Facility on material blending. Photo credit: Carlos Jones/Oak Ridge National Laboratory.

COVID-19 Innovators

PANDEMIC RESPONSE

Throughout the COVID-19 pandemic, UT’s innovators have risen to the occasion to address some of the biggest issues facing society.
Connecting Research with Industry Partnership Opportunities to Fight a Pandemic

A University of Tennessee Health Science Center (UTHSC) virologist and University of Tennessee Foundation (UTFI) fundraiser are working hard to further the holistic process of drug discovery in the fight against COVID-19 through innovative research and industry partnerships.

Michael Whitt is the associate dean and chair of the Department of Medical Education in the UTHSC College of Medicine and a professor in the Department of Microbiology, Immunology and Biochemistry. He is working with UTRF, other UTHSC researchers, and partners around the world to leverage his vesicular stomatitis virus (VSV) platform. The platform – a reverse genetics system for generating pseudotyped viruses with VSV – results in the assembly of the SARS-CoV-2 spike protein into a modified VSV, allowing researchers to work at a lower biosafety level than they would when working with the live SARS-CoV-2 virus.

Professor Designs and Donates Face Shield for Healthcare Workers

Assistant Professor of Architecture Maged Guerguis saw a way to improve an essential protective device for healthcare workers during the fight against COVID-19, and he responded as architects do: He innovated.

His goal was to improve safety and comfort for healthcare professionals working long hours fighting on the front lines of the pandemic. Guerguis, who teaches design and structural technology, began creating a new face shield in March 2020 that was designated U.S. patent pending (No. 29/733,737) in May 2020. The shield weighs only two ounces, assembles in five seconds, and provides improved comfort and maximum protection for medical professionals.

Throughout the design process, Guerguis collaborated with physicians and nurses from UT Medical Center, East Tennessee Children’s Hospital, and Covenant Medical Group, who helped in testing and provided feedback. When students, faculty, and staff returned to the UT campus in Knoxville for the beginning of the fall semester in August, as many as 50,000 uniquely designed protective face shields were ready for distribution to help provide an extra layer of defense against the conducting research on the COVID-19 virus to find a vaccine solution. Greg is in active discussions with several foundations and companies about providing philanthropic support for the COVID-19 research.

In addition to touting the talent and expertise of Colleen and her team, Greg is promoting a UTHSC advantage – the vertical stack or vertical platform. The vertical platform approach refers to the comprehensive nature of drug discovery efforts that can be conducted through the UTHSC system.

As a senior director of development with UTFI, Greg Harris builds relationships with research funders to secure philanthropy for UTHSC’s Office of Research priorities, such as research labs. One such lab is the Regional Biocontainment Lab (RBL), directed by Colleen Jonsson. The RBL is currently conducting research on the COVID-19 virus to find a vaccine solution. Greg is in active discussions with several foundations and companies about providing philanthropic support for the COVID-19 research.

In addition to touting the talent and expertise of Colleen and her team, Greg is promoting a UTHSC advantage – the vertical stack or vertical platform. The vertical platform approach refers to the comprehensive nature of drug discovery efforts that can be conducted through the UTHSC system.
Right: Researcher works in the UTHSC COVID-19 Lab. Photo credit: UTHSC/Natalie Brewer.

Below: UT Assistant Professor of Architecture Maged Guerguis and IACMI Chief Technology Officer Uday Vaidya display the UT Shield in the IACMI-supported Fibers and Composites Manufacturing Facility. Photo credit: IACMI.

Above: Dr. Koszalinski testing the SFM-V app. Photo credit: UTK Nursing.

Right: Dr. Merlin Theodore, director of the DOE’s Carbon Fiber Technology Facility at ORNL, and Dr. Peter Tsai, inventor of N95 filter media, hold a sample of filter media for face masks. Photo credit: Carlos Jones/Oak Ridge National Laboratory/US Department of Energy.
spread of the COVID-19 virus. The 50,000 shields for the UT campus were produced under the guidance of UT professor Uday Vaidya of the Department of Mechanical, Aerospace, and Biomedical Engineering.

Healthcare Apps Provide High-Quality, Patient-Centric Care During COVID-19

Two new healthcare apps created by University of Tennessee, Knoxville, researchers demonstrate their ability to make a difference in the healthcare system and support vulnerable and at-risk populations during the COVID-19 pandemic.

Rebecca Koszalinski, assistant professor of nursing, developed her app SFM-V for end users who have disabilities, such as cerebral palsy or spina bifida. SFM-V allows users to easily communicate with their providers in acute-care settings by indicating their pain level, specific needs, and advanced care planning preferences.

Thereasa Abrams, an assistant professor of social work, created the Bridge Mobile App for Burn Patients. Developed by an interdisciplinary team of UT researchers and the Firefighters Burn Center in Memphis, the HIPPA-compliant app provides patients with wound care instructional videos, connects them with recovery resources, and lets them chart their pain, anxiety, itch, and mood levels, which their providers can access. Thereasa explained that her app can also offer effective, remote self-care during the pandemic.

Other COVID-19 Projects

• UT led the tooling effort to successfully mold COVID-19 testing tubes and caps per industry partner requirements.
DECADE IN REVIEW

The innovation landscape is constantly evolving with new products, services, and companies entering the market each year. Looking back over the past decade, we’re presented with a long list of accomplishments in commercialization because the faculty, staff, and students at the University of Tennessee continue to develop new intellectual property that shapes the future of research and technology.

UTRF from 2010 to 2020

Part of UTRF’s core mission is to promote the commercialization of intellectual property through helping these innovators and entrepreneurs bring their products to market or launch new companies with UT technologies. Since 2010, UTRF has assisted in numerous notable product launches, including: Persist orchardgrass, one of the most popular commercial forage grasses currently in use throughout the nation; the SEFM app, used to create a more realistic experience to instruct future nurses in monitoring babies and mothers during labor; RetinaVue, an ophthalmic telemedicine platform for diabetic retinopathy screening; and DocuCare, an electronic health record that teaches students and health care professionals how to document and retrieve patient data.

The past decade has also been busy for UTRF subsidiaries and startups. During this period, UTRF formed five vital subsidiaries: Cherokee Farm Development Corporation (CFDC) in 2011; Space Institute Research Corporation (SIRC) in 2011; Collaborative Composite Solutions Corporation in 2014; Cherokee Farm Property Investments (CFPI) in 2014; and Clinical Trials Network of Tennessee (CTN2) in 2017.

UTRF helped launch 23 startups in the fields of medical education, medical devices, biotechnology, agriculture, pharmaceuticals, green chemistry, and diagnostics. Some of these startups include Hubble Telemedical (2010), Entac Medical (2012), Prisma Renewable Composites (2015), and Genera (2012). Most recently, Genera secured a $118 million investment to build its first manufacturing facility in Vonore, Tennessee, to produce its Earthable paper and packaging products.

Additional elements of UTRF’s core mission encourage an entrepreneurial culture and promote research and education. To do so, UTRF actively participates in launching and sponsoring new programs and event opportunities at UT and across the region.

At the beginning of the decade, UTRF established the Commercialization Analyst Program to provide qualified graduate students with hands-on experience in the commercialization of intellectual property. Additionally, in collaboration with Life Science Tennessee, UTRF helped expand the nine-week Scipreneur Challenge to hold events both in Memphis and Knoxville, where participating teams of students, scientists, clinicians, and mentors create a
business plan for STEM-related intellectual properties and compete in a final pitch competition.

In 2015, UTRF joined the Innov865 Alliance to develop, support, and promote Knoxville’s entrepreneurial ecosystem and has helped host the National Science Foundation (NSF) Innovation Corps (I-Corps) regional workshop series since 2017. Other relevant events and programs include Senior Design, the Rise & Grind series, Southeast XOR, Entrepreneur-In-Residence at UTHSC, Phase II Maturation Grants at UTHSC, and SBIR Training sessions.

In terms of metrics, UTRF has more than doubled its disclosure numbers and licenses executed since 2010. Throughout the decade, UTRF brought in over $18.68 million in license revenue with a total of 1,392 disclosures and 226 license agreements. Meanwhile, total capital raised by UTRF startups surpassed $200 million.

“We celebrate our UT faculty, staff, and students for their continued commercialization efforts and achievements over the past 10 years,” said Stacey Patterson, UTRF president and University of Tennessee vice president for research, outreach and economic development. “I am proud to lead the UTRF team and look forward to continuing to serve UT through our technology transfer mission into the next decade.”
Disclosures

*UTK disclosure numbers encompass data for UTK, UTIA, and UTSI.

UTRF by the NUMBERS

UTRF provides the tech transfer services to faculty, staff, and students system-wide.

Licenses

<table>
<thead>
<tr>
<th>Year</th>
<th>Licenses/Options</th>
<th>Licenses</th>
<th>Startup</th>
<th>License Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>134</td>
<td>42</td>
<td>17</td>
<td>$1.5 M</td>
</tr>
<tr>
<td>2019</td>
<td>134</td>
<td>30</td>
<td>17</td>
<td>$1.2 M</td>
</tr>
<tr>
<td>2018</td>
<td>134</td>
<td>24</td>
<td>17</td>
<td>$5.1 M</td>
</tr>
<tr>
<td>2017</td>
<td>134</td>
<td>17</td>
<td>17</td>
<td>$1.6 M</td>
</tr>
<tr>
<td>2016</td>
<td>134</td>
<td>21</td>
<td>17</td>
<td>$1.3 M</td>
</tr>
</tbody>
</table>
UTRF FIVE YEAR

$350+ Million

TOTAL IMPACT

$3.8 M
Paid to UT Inventors

$1.3 M
Paid to UT Colleges & Departments

~$214 M
Capital Raised by UTRF Affiliated Companies

~$123 M
UTRF’s Wholly Owned Subsidiaries’ Financial Impact to UT

$3.5 M
Investments in Patent Protection

~$5.4 M
UT Research Contracts Due to IP

424
Research Support Agreements

Patents

477
Filed
over the last 5 yrs

141
Issued
over the last 5 yrs

111
Filed FY20

28
Issued FY20

UTRF Patent Portfolio

42%
Licensed

20%
Never Licensed

9%
Provisionals

10%
UT Battelle

19%
Previously Licensed

Numbers representative of FY2020 period.
SEAK Therapeutics founder Wei Li is a Pharmaceutical Sciences professor at the University of Tennessee Health Science Center and Director of the UT College of Pharmacy Drug Discovery Center. He described the process of founding the company as a steep learning curve, but also a rewarding experience. He is thankful for UTRF’s support along the way.

“We are proud to help advance UT technology startups that positively contribute to the economic growth of our region. The significant increase in startup numbers for FY 2020 reflect both the hard work of innovators across the UT System and the UTRF licensing staff’s dedication to supporting our entrepreneurial community.”

- Stacey Patterson, UTRF President
The University of Tennessee has a wealth of innovators across the UT System who are constantly contributing their passions and skills to bring new ideas, goods, and services to the market. Committed to supporting entrepreneurial activity in the region, UTRF provides these innovators with many of the necessary resources to form a startup from UT innovations or intellectual property.

In fiscal year 2020, UTRF assisted in the launch of six startup companies based on UT intellectual property:

Attralus, Inc.

Attralus is a clinical-stage biotechnology company focused on amyloidosis, including novel diagnostics and therapeutics. They are fighting to improve the lives of patients suffering from systemic amyloid diseases such as AL (light chain), ATTR (transthyretin), and LECT2 amyloidosis. Attralus is developing peptide-based immunotherapies and cell therapy that targets phagocytosis of amyloid deposits leveraging the exquisite binding properties of its peptide technology. Attralus' technology has broad applications and the potential to address up to 30 systemic amyloid based diseases.

Azimuth Sleep Solutions, Inc.

Azimuth Sleep Solutions is on a mission to eradicate obstructive sleep apnea. With over 20 years of experience in care of patients with obstructive sleep apnea, the Azimuth team works closely with leaders in the field of sleep medicine and dental science to design products to meet the treatment needs of customers. The team is working to build the future of CPAP mask design.

Endeavor Composites, Inc.

Founded in June 2019, Endeavor Composites, Inc. is committed to a cleaner world by providing a zero-waste solution for fiber and composite manufacturers. Its nonwoven technology can transform any fiber trims, short spools, early production fibers and recycled fibers into a new product to cater to the advanced composites industry. These nonwoven fabrics are guaranteed to be defect-free, perform with excellent quality control, and tailored to specific customer needs.

NPI, LLC

Launched in 2020 by Ryan Yates, a Principal Scientist at the University of Mississippi School of Pharmacy’s National Center for Natural Products Research, NPI, LLC is a technology-driven natural product discovery and development company, which leverages its cutting-edge artificial intelligence and machine learning algorithms, along with its deep expertise in natural product chemistry and pharmacology, to assist dietary supplement companies in the development of their botanical innovation pipeline. The company also pursues the development and commercialization of its proprietary botanical ingredients, which includes its SmartCore technology licensed from UTRF.

Tel Boxx, LLC

Tel Boxx, LLC, was formed by two UT alumni Drs. Nima Tamaddoni and Graham Taylor, to further develop and sell a product called the Tamper Evident Box. The TEL BOXX™ proactively limits hospital exposure to non-reimbursable costs due to patients with a history of IV drug use, who are historically uninsured or Medicaid insured. In collaboration with nurses and UTRF, the TEL BOXX™ was developed by Dr. Matthew Mench, with key additional contributions to the initial design by Drs. Chad Duty and Matthew Young. The TEL BOXX™ has been used by 11 hospitals in 8 states. The cost-effective design is the only tamper evidence device that can be used on IV lines while infusing patients.

SEAK Therapeutics

Founded in November 2018, SEAK Therapeutics focuses on advancing drug development for pediatric cancers. In September 2019, the National Cancer Institute awarded the startup with a one-year, Phase I SBIR grant in the amount of $299,823 to further develop its current lead compound. In September 2020, SEAK was awarded a second Phase I SBIR grant from the NCI for $400,000.
Science Over Judgement: Text-based Counseling Application for Young Adults Grappling with Substance Use

At Behavioral Labs, participants struggling with cannabis use disorder or use of other substances enroll in a program where they receive automated, personalized text exchanges. The exchanges occur 16 out of the program’s 30 days, lasting anywhere from 5 to 10 minutes. This approach leverages Peer Network Counseling (PNC-txt) technology, an intervention that integrates motivational interviewing and peer network strategies with therapy techniques, to offer young adults an on-demand and effective way to decrease or abstain from substance use.

Dr. Michael Mason, Betsey R. Bush Endowed Professor of Children and Families at Risk in the Center for Behavioral Health Research, developed the PNC-txt technology from his years of experience studying adolescent and young adult substance use treatment and prevention. He also serves as the Chief Research Officer and Co-Founder of Behavioral Labs.

When speaking about the Behavioral Labs’ approach, Michael explains:

“We are not in users’ faces telling them that cannabis is bad and that they should stop. This program is for people that feel like their cannabis use is starting to run their lives. It’s coming from them, having them talk about their own need to change; we are the facilitators in trying to activate their motivation.”

To start the transition from lab to market, he enlisted his brother Roy Mason, who has over 30 years of experience at Fortune 500 companies, to serve as the Chief Operations Officer. In turn, Roy brought on fellow business leader Rich Weymer to act as the startup’s Chief Executive Officer.

Endeavors in Advanced Composites: UT Startup Recycles Fibers for Nonwoven Mats

Endeavor Composites has developed an innovative mixer system that can disperse long (1 to 1.5 inches) carbon fibers in water, producing defect-free nonwoven mats for use in fiber-reinforced composites manufacturing — a challenge that researchers have been unsuccessfully attempting to solve for the past few decades. The technology offers numerous advantages over current fiber dispersion techniques and meets a critical need to prevent the waste of scrap and recycled fibers caused by rise in demand for carbon fibers in the composites industry. The technology also addresses the automotive industry’s current emphasis on using lightweight materials to increase fuel efficiency, which has larger future implications for the marine and aerospace industries.

After filing an invention disclosure on the technology, inventor Hicham Ghossein worked with UTRF to file a patent application and execute a license to his company. He expressed appreciation for UTRF’s support during the entire process, remarking that the team was very helpful and flexible.

He joined ORNL’s Innovation Crossroads program, and as a Cohort 3 participant, he outlined two program goals: build a scaled-up machine to process the fabric beyond the current lab-scale production and create a database to validate that he has a working, viable product.

“As scientists and engineers, we want to see our ideas grow and mature,” he explained. “No one wants to discover something and see it put on a library shelf. Being in an ecosystem with organizations and programs like UTRF, IACMI, and Innovation Crossroads that help you see your work become significant is a huge value for us.”
"Sometimes the invention disclosures are in fields I essentially have to learn a whole new vocabulary to understand; it’s a good challenge. The UTRF staff takes time to work closely with us on complex technologies. They do a really good job and understand that we don’t always have experience in the area that we are working on."

Luke Erwin, Multi-Campus Office Intern, 2020-2021

"I applied for the program to gain more patent experience and insight into the inner workings of the commercialization process. My typical workload consists of conducting IP, marketing, and industry analyses. Through the internship, I hope to learn more about a future career path in IP law."

Liam O’Donnell, Health Science Center Office Intern, 2020

"Working at UTRF allowed us to see the IP process for technologies from start to finish, not just from a legal perspective. I think getting that extra perspective will be beneficial for a career in many other fields, in addition to IP law."

Dalton Howard, Multi-Campus Office Intern, 2020-2021

UTRF’s internship program offers valuable career experience to UT law students, graduate students, and post-doctoral researchers interested in the commercialization process of innovations from the University of Tennessee.

Interns in UTRF’s Commercialization Analyst Program work closely with the technology managers, getting an inside look at the progression of innovations, from initial discovery to commercial product. In this program, interns benefit from an approach that merges science with law, business development, and entrepreneurship. They have the opportunity to evaluate intellectual property, conduct market and industry analyses, develop marketing materials, and do targeted marketing.
OUTREACH & EVENTS

1

2

3

4

5

18 | UTRF DISCOVER 2020
1. Volkswagen Group of America, ORNL, and UT announced a collaboration to create Volkswagen’s first innovation hub in North America at the UT Research Park at Cherokee Farm.

2. UTRF Vice President Maha Krishnamurthy shares with UT College of Law students about the UTRF Commercialization Analyst program.

3. UTRF Technology Manager Kusum Rathore speaks to UTK MABE students about the importance of protecting their intellectual property and ways that UTRF can assist in the process.

4. Geetika Singh, UTRF Ximbassador, presents on the Ximbassador program at UTHSC.

5. The Commission of Knox County presents Dr. Peter Tsai with an honorary resolution for his contribution to improving global public health and innovations in material sciences.

6. Kickoff to the 2020 Memphis Scipreneur Challenge. The nine-week program showcases STEM-related IP and provides entrepreneurship training to teams of students and postdoctoral fellows.

7. UTRF Senior Staff Attorney Lakita Cavin and Technology Manager Kusum Rathore presented a Technology Transfer Basics webinar outlining the technology transfer process, services provided by UTRF, and insight into the commercialization of UT innovations.

8. Innov865’s Startup Day 2020 winners included the Innov865 Crowd Favorite prize, Quantum Lock; the first recipient of the Innov865 Impact Award, N95 mask material developer Dr. Peter Tsai; and the judges’ choice, 490 BioTech.

9. UTRF Technology Manager Nghia Chiem serves as a judge for Vol Court and poses with the Spring 2020 winners.

10. Leaders from the UT Medical Center and OrthoTennessee gather at the UT Research Park at Cherokee Farm to break ground on UT Medical Center’s Advanced Orthopaedic Institute.
In each monthly newsletter, UTRF shines the inventor spotlight on a UT faculty member. These features provide an opportunity to support and encourage the inventors who partner with UTRF to bring their innovations to market.

Inventor Spotlight

UDAY VAIDYA
Department of Mechanical, Aerospace & Biomedical Engineering (MABE), UTK

Dr. Uday Vaidya serves as the UT/ORNL Governor’s Chair in Advanced Composites Manufacturing, the Director of the Fibers and Composites Manufacturing Facility, and the Chief Technology Officer at the Institute for Advanced Composites and Manufacturing Innovation. Throughout his illustrious career, Uday’s work has greatly contributed to research and development of engineered polymers, fibers, and composites.

THEREASA ABRAMS
College of Social Work, UTK

Dr. Thereasa Abrams, assistant professor of social work at the University of Tennessee, Knoxville, is seeking to improve outcomes for burn survivors. Thereasa’s research interests focus on burn patients and how social workers might better meet the needs of survivors in underserved regions of the country. Currently, much of her work focuses on the development of a healthcare app, the Bridge Mobile App for Burn Patients.

PATTI LITTLE
Department of Anesthesiology, UTHSC

The University of Tennessee Health Science Center’s Patti Little, MD, assistant professor in the Department of Anesthesiology and physician at Regional One Health, is passionate about science and innovation. Dr. Little spends much of her time caring for extremely ill patients. In this environment, she realized a true need for a device that had only been an idea in her mind for several years.

JEREMY SMITH
Department of Biochemistry & Cellular and Molecular Biology (BCMB), UTK

Dr. Jeremy Smith is a molecular biophysicist who uses the laws of physics and principles of chemistry through supercomputing to understand biological systems. He serves as the UT/ORNL Governor’s Chair for Molecular Biophysics and is the director of the UT/ORNL Center for Molecular Biophysics. He currently leads a team using ORNL’s IBM AC922 Summit supercomputer to identify promising compounds that may result in a drug to fight COVID-19.

TAREK HEWEZI
Department of Plant Sciences, UTIA

A professor in the Department of Plant Sciences at the UT Institute of Agriculture, Dr. Tarek Hewezi and his team study parasitic nematodes, with a special focus on soybean cyst nematodes. As soybeans represent one of the largest agricultural commodities in the U.S., this parasite not only endangers soybean farms but poses a threat to agricultural trade and exports. Fortunately, Tarek and his team have identified several novel major SCN resistance genes.
VINCE PANTALONE
Department of Plant Sciences, UTIA
Dr. Vince Pantalone is a professor in the Department of Plant Sciences and project leader for the Soybean Breeding and Genetics Program. He and his team work to develop new soybean varieties with increased disease resistance and higher, better-quality yields for farmers. His research centers on targeting genetically improved germplasm and new cultivars with enhanced productivity, disease resistance, herbicide tolerance, and tolerance to biotic and abiotic stresses.

FENG-YUAN ZHANG
Department of Mechanical, Aerospace & Biomedical Engineering (MABE), UTSI
Dr. Feng-Yuan Zhang seeks to make hydrogen a more viable source for high-efficiency energy conversion and storage through his work on nanotechnology and micro-/nano-electromechanical systems (MEMS/NEMS). As a professor of Mechanical, Aerospace and Biomedical Engineering and founder of the NanoHELP Lab at UTSI, he emphasizes the importance of technology integration and interdisciplinary collaborations to create a more sustainable future.

SCOTT STROME
College of Medicine, UTHSC
While serving as the Robert Kaplan Executive Dean of the College of Medicine and Vice Chancellor for Health Affairs at UTHSC, with a research focus in translational immunology, Dr. Scott Strome is also passionate about entrepreneurship. From providing investigators with unique access to funding opportunities to bringing high-quality jobs to the community, he believes entrepreneurial efforts add considerable value to universities.

JONATHAN WALL
Department of Medicine, UTGSM
Dr. Jonathan Wall, a professor and Director of Research at the University of Tennessee Graduate School of Medicine and Interim Chief Scientific Officer of biopharmaceutical startup Attralus, has made it his mission over the last two and a half decades to study amyloidosis. His team has received over $10 million in grants from the NIH and contract funding for work that focuses on the development and translation of novel diagnostic and therapeutic reagents for this rare disease.

VALERIA VÁSQUEZ
Department of Physiology, UTHSC
Dr. Valeria Vásquez is an associate professor in the Department of Physiology in the College of Medicine at the University of Tennessee Health Science Center. Her research aims to understand the functional and structural basis of mechanosensitive ion channels responsible for touch, pain, and proprioception. Her research career is an inspiring example of dedication to innovation and inclusion.

MICHAEL MASON
Department of Public Health, UTK
Dr. Michael Mason is the Betsey R. Bush Endowed Professor of Children and Families at Risk in the UT College of Social Work’s Center for Behavioral Health Research. He studies adolescent and young adult substance use treatment and prevention, along with social and environmental influences on substance use and mental health.
The annual maturation program aims to assist researchers in advancing new technologies on the path to market by awarding up to $15,000 in direct costs to the highest ranking proposals. The program is open to researchers, faculty, staff, and students across all University of Tennessee campuses and institutes.

2020 TECHNOLOGY MATURATION GRANT RECIPIENTS

<table>
<thead>
<tr>
<th>Inventors</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deidra J.H. Mountain</td>
<td>Preclinical Validation of Liposome Delivery System Developed for Gene Therapeutics</td>
</tr>
<tr>
<td>Xueping Li, Tami Wyatt, Susan Hébert, & Sheila Taylor</td>
<td>SaaS Provisioning of the Simulated Electronic Fetal Monitoring (SEFM) App</td>
</tr>
<tr>
<td>Lisa Merritt & Xueping Li</td>
<td>A Pilot Study for the eVisit Simulation App</td>
</tr>
<tr>
<td>Jillian McCarthy Maeder & Michael Berry</td>
<td>Vocabulary Coordinator (VocaCoord): A Speech to Text Solution to Accessing Academic Vocabulary</td>
</tr>
<tr>
<td>Patti M. Johnstone, Kelly R. Yeager, Emily Noss, & Molly Erickson</td>
<td>Pediatric Auditory Recognition Test (PART)</td>
</tr>
<tr>
<td>Michio Kurosu</td>
<td>In Vivo Evaluation of a Novel DPAGT1 Inhibitor, APPB, Using Patient-Derived Xenograft Models</td>
</tr>
<tr>
<td>Frank Park</td>
<td>Cannabinoids and Kidney Injury</td>
</tr>
<tr>
<td>Jonathan Spagnoli, Jarrod Young, & Tim Jancelewicz</td>
<td>An Ultrasoundable Extracorporeal Life Support Training Solution for Team Practices</td>
</tr>
<tr>
<td>Ryan Meacham, Jake Morris, Joseph Abou-Rahma, & Jake Spurlock</td>
<td>Life Pen Smoking Cessation Platform</td>
</tr>
</tbody>
</table>
“Once you make a discovery, it can be very difficult to find your way to the market. I would not be able to do that without UTRF’s help. It’s outstanding. I have never seen any research foundation do what they do. They are very persistent and helpful. I think we are fortunate to have UTRF in this capacity at UT.”

- Dr. Tarek Hewezi

The journey of bringing a technology from initial discovery to the marketplace can be a long and challenging process. Industry landscape changes constantly, and companies consistently raise the bar on the amount of data and de-risking they require prior to licensing. Commercialization occurs in a “learn fast” environment where innovators must be willing to respond to evolving industry needs.
UTGSM Innovators Demonstrate Progress in Therapeutics for Systemic Amyloidosis

A team of researchers from the University of Tennessee Graduate School of Medicine has spent more than two decades investigating systemic amyloidosis, a rare and often fatal disorder with few treatments. Their work played an integral role in moving discoveries out of the lab and into clinical trials, helping launch a biopharmaceutical company focused on improving patient outcomes.

Dr. Jonathan Wall, a professor and Director of Research for the University of Tennessee Graduate School of Medicine, serves as the Interim Chief Scientific Officer of Attralus, a biopharmaceutical startup that seeks to advance transformative therapeutics and diagnostics for systemic amyloidosis. Jon and four team members from the Amyloidosis and Cancer Theranostics Program at UT founded the startup (originally named Solex) in 2011. Spencer Guthrie, CEO of Attralus, joined the team in October 2019 to help secure funding to advance their discoveries and navigate the commercialization process.

Attralus recently announced the completion of its $25 million Series A financing led by venBio Partners. This funding will allow Attralus to continue to validate its pan-amyloid imaging agent and advance two therapeutic candidates into clinical development for treatment of amyloidosis.

UTRF helped patent and license Jon and his team’s technologies, along with protecting his interests and publication rights. Currently, Attralus has licensed 13 issued patents and patent applications spanning five different disclosures submitted to UTRF between 2010 and 2020.

New License for a UTIA Technology to Fight Billion-Dollar Agricultural Crisis

For Dr. Tarek Hewezi, associate professor in the Department of Plant Sciences at the University of Tennessee Institute of Agriculture (UTIA), a recent research license marks a great accomplishment and lays the groundwork for a potential long-term industry partnership.

Using a novel epigenetic approach, Tarek and his team identified several soybean cyst nematode (SCN) resistant genes, which have shown significant potential to develop disease-resistant plant varieties: a discovery that could save the soybean industry billions of dollars every year.

In May 2020, UTRF executed an exclusive option agreement with GDM, a major international soybean genetics and breeding company for Tarek’s technology, “Discovery of Major Genes Controlling Soybean Resistance to Soybean Cyst Nematode.”

The execution of this agreement follows years of diligent research, technology evaluation, and marketing efforts. Since 2013, UTRF has partnered with Tarek to protect his innovations through four invention disclosures, one issued patent, and two pending patent applications. But protecting innovations is only one step in the commercialization journey. Gaining the interest of a commercial partner often requires proactive and targeted efforts; there is no guarantee that “if you build it, they will come.” In this case,
UTHSC Researchers and Practitioners Collaborate to Develop Life-Saving Technology

A new healthcare invention from the University of Tennessee Health Science Center’s (UTHSC) Center for Healthcare Improvement and Patient Simulation (CHIPS) in Memphis is a true testament to scientific collaboration and the power of the University of Tennessee ecosystem.

In April 2019, a team of researchers and practitioners debuted an Infant Pericardiocentesis Trainer at the Patent Ductus Arteriosus (PDA) Symposium in Memphis. The team includes Jonathan Spagnoli, lead inventor and CHIPS simulation specialist; Jarrod Young, CHIPS simulation operations lead; Dr. Sandeep Chilakala, associate professor of pediatrics-neonatology; and Dr. Ranjit Raju Philip, assistant professor of pediatrics-cardiology.

The Infant Pericardiocentesis Trainer educates medical professionals in blind or ultrasound-guided infant pericardiocentesis. Pericardiocentesis is the definitive emergency treatment for tamponade, a life-threatening condition caused by fluid accumulation around the heart. The condition rarely occurs, yet when it does, the procedure must be conducted accurately within a matter of minutes. Due to the rarity of the condition, physicians with limited exposure to it might spend much of their career lacking the knowledge or skill needed to perform this life-saving procedure.

Jonathan and the team designed the trainer (which is placed in a baby doll to increase the realistic nature of the simulation) with ultrasound-capable tissue that allows for the option of blind or guided access into the pericardium, the outside membrane of the heart. To make the trainer even more realistic, it features dual chambers with separate fluid ports and colors that provide visual feedback for the trainee. Essentially, if a trainee inserts the needle too far, they would see a different color.

Another vital part of the collaborative process has been UTRF.

“UTRF showed us the potential we didn’t know our technology had,” Jonathan said.

With UTRF’s guidance, Jonathan and the team attended UT Day on the Hill, meeting with state legislators and gaining valuable connections and visibility. The latest Memphis Scipreneur Challenge also featured the technology.
PATENTS FY 2020
<table>
<thead>
<tr>
<th>Patent No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,355,268</td>
<td>Carbon-Metal Oxide Composite Materials and Their Use in Anodes of Lithium and Sodium Ion Batteries</td>
</tr>
<tr>
<td>10,351,768</td>
<td>Intrinsic and Activated A4BX6 Scintillators</td>
</tr>
<tr>
<td>10,369,133</td>
<td>Immunosuppressive Compounds and Therapeutics</td>
</tr>
<tr>
<td>10,372,148</td>
<td>Power System Disturbance Location Determination Based on Rate of Change of Frequency</td>
</tr>
<tr>
<td>10,381,656</td>
<td>Nanocomposite Electrode Material for Proton Conducting Fuel Cell</td>
</tr>
<tr>
<td>10,377,945</td>
<td>Mixed Halide Scintillators for Radiation Detection</td>
</tr>
<tr>
<td>10,390,543</td>
<td>Foaming and Emulsifying Properties of High Pressure Jet Processing Pasteurized Milk</td>
</tr>
<tr>
<td>10,391,472</td>
<td>Surface-Functionalized Polyolefin Fibers and Their Use in Methods for Extracting Metal Ions from Liquid Solutions</td>
</tr>
<tr>
<td>10,407,343</td>
<td>Method of Producing Geopolymer Cement Utilizing Desulfurized Red Mud</td>
</tr>
<tr>
<td>10,440,874</td>
<td>Flex Roller-Crimper for Improved Management and Termination of Cover Crops and Other Plant Material</td>
</tr>
<tr>
<td>10,441,570</td>
<td>Selective Androgen Receptor Degrader (SARD) Ligands and Methods of Use Thereof</td>
</tr>
<tr>
<td>10,447,038</td>
<td>Microgrids with Dynamically Configurable Boundaries Including Multiple Main Grid Feeder Coupling Locations and Methods of Operating the Same</td>
</tr>
<tr>
<td>10,450,610</td>
<td>Single Nucleotide Polymorphisms (SNP) and Association with Resistance to Immune Tolerance Induction</td>
</tr>
<tr>
<td>10,457,956</td>
<td>SCN Plants and Methods for Making the Same</td>
</tr>
<tr>
<td>10,470,993</td>
<td>Tooth Remineralization Compositions and Methods</td>
</tr>
<tr>
<td>10,481,120</td>
<td>Droplet Based Measurement of Specific Capacitance and Interfacial Tensions</td>
</tr>
<tr>
<td>10,516,089</td>
<td>Memory Cell Comprising Coupled Josephson Junctions</td>
</tr>
<tr>
<td>10,522,842</td>
<td>Reversible Bifunctional Air Electrode Catalyst for Rechargeable Metal Air Battery and Regenerative Fuel Cell</td>
</tr>
<tr>
<td>10,525,037</td>
<td>Compounds for Treatment of Cancer</td>
</tr>
<tr>
<td>RE47838</td>
<td>Inhibitory Peptides of Viral Infection</td>
</tr>
<tr>
<td>10,584,403</td>
<td>Surface-Hardened Aluminum-Rare Earth Alloys and Methods of Making the Same</td>
</tr>
<tr>
<td>10,591,617</td>
<td>Perovskite-Type Halides and Methods Thereof</td>
</tr>
<tr>
<td>10,597,354</td>
<td>Selective Androgen Receptor Degrader (SARD) Ligands and Methods of Use Thereof</td>
</tr>
<tr>
<td>10,598,704</td>
<td>Universal Grid Analyzer</td>
</tr>
<tr>
<td>10,602,951</td>
<td>Methods of Predicting and Monitoring Labor</td>
</tr>
<tr>
<td>10,603,006</td>
<td>Systems and Methods for Predicting Gastrointestinal Impairment</td>
</tr>
<tr>
<td>10,637,293</td>
<td>Dual-Frequency Mode Transmitter for Wireless Power Transfer</td>
</tr>
<tr>
<td>10,646,568</td>
<td>Targeting Immunotherapy for Amyloidosis</td>
</tr>
<tr>
<td>10,654,809</td>
<td>Selective Androgen Receptor Degrader (SARD) Ligands and Methods of Use Thereof</td>
</tr>
<tr>
<td>10,662,148</td>
<td>Selective Androgen Receptor Modulator and Methods of Use Thereof</td>
</tr>
<tr>
<td>10,670,626</td>
<td>Test Fixture for Observing Current Flow Through a Set of Resistors</td>
</tr>
<tr>
<td>10,676,539</td>
<td>Tissue Plasminogen Activator Antibodies and Methods of Use</td>
</tr>
</tbody>
</table>
Featured Inventors

UT researchers who submitted invention disclosures 7/01/2019 - 6/30/2020.

Aaron Garringer
Aaron Wilson
Abdelrahman Ali Mohammed
Akram Amir Mustafa Saad
Alex Ruzicka
Alexander Terekhov
Allen Hailong Lyu
Aly Fathy
Amalia Laurene Kappel
Amelia Brown
Ammaar Abidi
Andrei Cozma
Andrew Ten Eyck
Andy Miller
Anna Furches
Anthony Sheyn
Aria Crysta Deluna
Austin Michael Schmidle
Bamin Khomami
Ben Mohr
Benjamin Schwartz
Beverly Marie Wesh
Bingrui Li
Bob Moore
Brett Compton
Brian Canfield
Brian Edwards
Brian Mendoza
Caen Ang
Cameron William Oakley
Caroline Placidi De Bortoli
Celeste Pelletier
Chanho Lee
Chao-Yie Yang
Charles Bond
Charles Melcher
Chengwen Zhang
Chujie Zeng
Colleen Jonsson
Cong Trinh
Curtis Anthony Haley
Daelyn Greene
Daniel Caleb Rucker
Daniel Joseph Rutstrom
Daranee Versluis
Darin Johnston
David Anderson
David Garcia
David Michael Harris

David Paul Harper
Dayakar Penumadu
Deidra Mountain
Dibyendu Mukherjee
Dong-Jin Hwang
Doug McCaughan
Douglas Aaron
Duane Miller
Dustin Gilbert
Elijah Davis
Elizabeth Fitzpatrick
Emily Noss
Enzo Dinglasan
Eric Heidel
Eric Wade
Ethan Patrick Connor
Fan Zhang
Feng-Yuan Zhang
Francisco Gutierrez
Frank Park
Fred (Fei) Wang
Fuhua Li
Gaoqiang Yang
Gary Wilkerson
George Huang
George Laggis
Greg Lambert
Guannan Zhao
Haley Cassandra Dylewski
Handong Gui
Harley Ashton Dukes
Harry Kochat
Hassan Almoazen
Hatim Kamal
Henry Iduoze
Henry Yin
Holly T. Nielsen
Huangqinq Xiao
Hunter Potter
Hunter Rice
Hyungmin Seo
Hyo Young Choi
Ibrahim Abdullah S Altarjami
Jacen Moore
Jack Gotcher
Jacob Morris
Jacob Spurlock
Jacqueline Johnson
Jake A. Childs
Featured Inventors 7/01/2019- 6/30/2020

Peter Liaw
Peter Tsai
Peyton Holman
Phil Kreth
Piet Jones
Preetam Sharma
Ramesh Narayanan
Randall Jones
Rian Cho
Richard Gerhold Jr.
Richard Grambergs
Richard Lee Sarten
Richard Steiner
Robert Garibay
Ruida Hou
Russell Lee Leonard
Ryan Ginder
Ryan Meacham
Sam Jurek
Sam Mattern-Schain
Samantha Rose Maness
Samuel Dagogo-Jack
Samuel Evans
Sarbottam Piyya
Saroj Khanal
Scott Lenaghan
Scott Strome
Shanshan Deng
Shantaveer Gangu
Shigetoshi Eda
Shule Yu
Siqun Wang
Sophia Elizabeth Sapp
Soubantik Palchoudhury
Souvik Banerjee
Stephen Andrew Sarles
Stephen Brown
Stephen Kania
Subhadeep Chakraborty
Sungwoo Yang
Suresh Babu
Susan Hamilton
Susan Hebert
Tao Fei
Tarek Abdel Fattah Hewezi
Terry Price
Thamarai Ponnusamy
Thomas Patrick Kinsey
Tiffany Seagroves
Tim Hodge
Timothy Flerlage
Timothy Patrick Mannon
TJ Hollingsworth
Tom Berg
Toni Wang
Tony Schmitz
Tyler Mccubbins
Uday Vaidya
Vahid Disfani
Valeria Vasquez
Wei Li
Weikang Wang
Wen Zhang
Wenpeng Yu
Wes Hines
William Penley Davis
Xueping Li
Yali He
Yan Lin
Yilu Liu
Ying Yu
Yongtao Liu
Yunchao Li
Yuntao Wu
Zachary Nolan
Zane Chapman
Zhihao Jiang
Zhiqiang Xie
Zhongjie Sun
Zhongzhi Wu
Zhousheng Xiao
Zibin Guo
UTRF Staff

Stacey S. Patterson, PhD
President

Richard Magid, PhD
Vice President

Maha Krishnamurthy, PhD, MBA
Vice President

Lakita Cavin, JD, PhD
Senior Staff Attorney

Nghia Chiem, PhD
Technology Manager

Andreana Leskovjan, PhD
Technology Manager

Kusum Rathore, PhD
Technology Manager

Robyn Geron, MBA
Assistant Commercialization Manager & Patent Coordinator

Samantha Jeffers, CPA
Budget Director

Teresa Cooper
Accounting Assistant

Kayleen Darrow
Accounting Assistant

Dori Miller
Office Manager

Tinieka Thrailkill, MPS
Senior Administrative Coordinator

Kathy Richards
Business Incubator Coordinator

Katie Jones
Marketing Coordinator

UTRF Board of Directors

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhonda Rice</td>
<td>Board Chair, External Representative, Knoxville</td>
</tr>
<tr>
<td>Keith Helton, MD</td>
<td>External Representative, Chattanooga</td>
</tr>
<tr>
<td>Steve Goodman, PhD</td>
<td>UTHSC, Vice Chancellor for Research</td>
</tr>
<tr>
<td>Brendan Boyd, PhD</td>
<td>External Representative, Kingsport</td>
</tr>
<tr>
<td>Deborah Crawford, PhD</td>
<td>UTK, Vice Chancellor for Research</td>
</tr>
<tr>
<td>Mike Paulus, PhD</td>
<td>UT-Battelle Representative</td>
</tr>
<tr>
<td>Jamie Woodson, JD</td>
<td>UT Board of Trustees Representative</td>
</tr>
</tbody>
</table>
UTRF is a non-profit 501(c)(3) organization that promotes the commercialization of UT intellectual property, encourages an entrepreneurial culture, contributes to state and regional economic development, and promotes research and education to benefit the people of Tennessee and beyond.